Elektrik Akım Kaynakları

ELEKTRİK AKIM KAYNAKLARI

Bir iletkenden elektrik akımının geçebilmesi için iletkenin iki ucu arasında bir potansiyel farkı olmalıdır. Elektrik akımı katı iletkenlerde (-) uçtan (+) uca doğru akan elektronlar , sıvı ve gazlarda ise (+) ve (-) iyonların hareket etmesiyle sağlanır.

Elektrik akımı , elektrik yüklerinin iki nokta arasında sürekli akışıdır. Elektrik devrelerinde iki nokta arasında potansiyel farkı oluşturan ve yüklerin sürekli olarak hareketlerini sağlayan düzeneklere Elektrik Akımı Kaynakları denir. Örneği pil , akümülatörler ve elektrik santralleri gibi. Elektrik akım kaynakları ikiye ayrılır. Bunlar doğru akım kaynakları ve Alternatif akım kaynaklarıdır.

Doğru Akım Kaynakları

Kimyasal reaksiyonlar sonucu elektrik akımı elde etmek mümkündür. Elektrik enerjisi üreteçlerde elde edilir.

Doğru Akım ( DC ) : Bir elektrik devresinde elektrik yüklerinin veya akımın belli bir yönde akan , yön değiştirmeyen ve şiddeti değişmeyen akıma doğru akım denir.

Bir yönde akım sağlayan kaynaklara da doğru akım kaynakları denir. Örneğin Pil , akümülatör ve dinamo gibi.

a ) PİLLER

Piller kimyasal enerjiyi elektrik enerjisine çevirir. (+) ve (-) kutupları vardır. Dolu pilin kutupları arasında Potansiyel farkı vardır. Çeşitli piller vardır. Her pilin yapısında iki elektrot ve elektrotların içine batırıldığı bir elektrolit vardır. Potansiyel farkı Voltmetre veya elektrometre ile ölçülür. Potansiyel farkı birimi Volttur. Piller basit pil , kuru pil ve doldurulabilen piller diye üçe ayrılır.

1-Basit Bir Pil Yapma

[IMG]file:///C:/DOCUME%7E1/Yasin/LOCALS%7E1/Temp/msohtml1/01/clip_image002.jpg[/IMG]

Volta Pili : Bakır ve çinko elektrotlar H2SO4 çözeltisine batırılınca akım elde edilir. H2SO4 ile çinko (Zn) elektrot arasında kimyasal reaksiyon oluşur. Çinko (Zn) atomları ikişer elektronunu çinko elektrota bırakarak Zn+2 iyonu halinde çözeltiye karışır.

[IMG]file:///C:/DOCUME%7E1/Yasin/LOCALS%7E1/Temp/msohtml1/01/clip_image003.gif[/IMG] Zn Zn+2 + 2ē

Çinko elektrot üzerinde elektronlar birikir. Çözeltideki H+ iyonları Zn+2 tarafından bakır elektrota itilir. Akım geçince dış devreden gelen elektronlar H+ iyonlarını nötrleştirir. Bakır elektrot üzerinde biriken H gazı bir süre sonra akımın kesilmesine yol açar. Volta pilinde bakır elektrotun H gazı ile kaplanarak akım veremez duruma gelmesine kutuplanma veya Polarizasyon denir. Volta pilinde çinko elektrot pilin (-) kutbunu , bakır elektrot ise (+) kutbunu oluşturur.

Danielle Pili : Bakır sülfat çözeltisi içine bakır elektrot , çinko sülfat çözeltisi içine çinko elektrot aralarına da Parşömen kağıdı konularak elde edilen pildir.

Leclanche Pili : Nişadır çözeltisi içerisine batırılmış mangandioksit ve karbondan oluşmuş bir pildir.

2- Kuru Pil

Pilin kabı çinkodan yapılmıştır. Bu kap aynı zamanda pilin (-) kutbu görevini yapar. Karbon çubuk (+) kutbunu oluşturur. Karbon çubuğun etrafında %75 mangandioksit ve %25 grafitten oluşan bir katman bulunur. Pildeki elektrolitik sıvı ise amonyum klorür çözeltisidir.

Pil akım verirken amonyum iyonları ( NH4+ ) karbon çubuktan elektron alarak H2 ve amonyak ( NH3 ) haline geçer. Çinko kaptan çözünen çinko iyonları ( Zn+2 ) ise Cl- ile birleşerek çinko klorür haline geçer. Amonyak çinko klorür ile H2 ise mangandioksit ile tepkimeye girer.

Birden fazla pil birbirine ağlanarak bataryalar elde edilir.

3- Doldurulabilen Piller

pilin doldurulması olayına Şarj denir. Pilin boşalmasına Deşarj denir. Doldurulabilen pillere Nikel kadmiyum pilleri ve kurşunlu akümülatörler örnek verilebilir.

Pilden akım alınırken Kadmiyum , kadmiyum Hidroksit haline dönüşür. Nikel Oksi Hidroksit ise Nikel Hidroksite dönüşür. Kadmiyum ve nikel oksi hidroksit tükendiğinde pil boşalır. Doldurulma olayı dışarıdan verilen elektrik enerjisi ile sağlanır.

Diğer Doğru Akım Kaynakları

Akümülatörler

Akümülatör de bir tür pil çeşididir.

Elektrik enerjisini kimyasal enerji olarak depolayan ve bunu istenildiğinde tekrar elektrik enerjisi olarak dönüştüren düzeneğe Akümülatör denir.

Elektrotlar arasına bir doğru akım kaynağı bağlanır. Bu sırada elektroliz olayı gerçekleşir. Buna akümülatörün şarjı denir. Akümülatör dolarken H+ iyonları (-) elektroda , ( SO4)-2 iyonları da (+) elektroda gider. Bu olay esnasında anotta kurşundioksit (PbO2 ) , katotta ise kurşun ( Pb ) oluşur. Çözeltinin içinde iki farklı elektrot elde edilir. Böylece şarj olmuş akümülatör elektrotlar arasında oluşturulacak devreye akım verir. Akümülatörün akım vererek her iki elektrotun kurşun haline dönüşmesine akümülatörün boşalması (Deşarj ) denir. Dolma sırasında depo edilen kimyasal enerji boşalma sırasında elektrik enerjisine dönüşür.

Ayrıca Demir- Nikel akümülatörleri de vardır. Akümülatörlerden başka doğru akım kaynakları da vardır. Örneğin Dinamo , güneş pili , termoelektrik pil , fotoelektrik pil gibi.

Pil Oluşumu İle Maddelerin Aşınması ( KOROZYON )

İki farklı elektrot bir elektrolit içine batırılınca pil oluşur. Pilden akım alınırken elektrotlar değişime uğrar. Kendiliğinden oluşan piller de vardır. Bunlara istenmeyen piller denir. Doğal ortamlarda birbirine dokunmakta olan iki farklı metal nemli ortamda bulunuyorsa istenmeyen pil oluşabilir. İstenmeyen pil oluşumu metallerin aşınmasına yol açar.

KorozyonS. AKÇAY: Metal yüzeylerinin istenmeyen pil oluşumu ile kendiliğinden aşınmasına korozyon denir.

Metallerin ısı etkisi ile aşınması , zımpara ve diğer araçlarla oluşturulan aşınmalar korozyon değildir.

Korozyon etkisi ile parlak metal yüzeyleri donuklaşır. Demir üzerinde pas oluşur. Çinko beyaz ve donuk bir tabaka ile örtülür. Bakır üzerinde yeşil bir katman oluşur. Gümüş kararır. Platin ve altın parlak kalır. Bazı metaller kolay bazıları ise zor korozyona uğrarlar. Bazı metaller daha fazla aktif bazıları ise az aktiftir. Çok aktiften az aktife doğru bazı metaller şöyle sıralanır :

Magnezyum , alüminyum , çinko , demir , kurşun , kalay , bakır , gümüş , platin, altın.

İki metal bir araya getirilince daha soy olan ( az aktif olan ) metal (+) elektrot , diğeri (-) elektrot olur. (-) elektrot olan metal korozyona uğrar , diğeri ise korunur.

Evlerde kullanılan metalden yapılmış eşyalar kendisinden daha soy olan metallere uzun süre dokundurulmamalı Örneğin çelik tencere gümüşe dokunursa korozyona uğrar. Korozyon olayı kuru ortamlarda da gerçekleşebilir. Metallerin gazlarla etkileşmesi sonucu gerçekleşen bu olaya Kuru Korozyon denir.

İstenmeyen pil oluşumlarında bir metalin korozyonunu önlemek için daha az soy olan bir metale dokundurulur. Bir metalin korozyonunu önlemek için kullanılan metale Kurban Elektrot denir.

Alternatif Akım Kaynakları

Alternatif Akım ( AC )S. AKÇAY : Yönü ve şiddeti sürekli olarak değişen akıma alternatif akım denir.

Alternatif akım elde etmeye yarayan düzeneklere Alternatör veya Alternatif Akım Jeneratörü denir.

Mekanik , ısı , kimyasal yada nükleer enerjiyi elektrik enerjisine dönüştüren sistemlere elektrik santralleri denir.

Hidroelektrik Santraller

Su gücünden yararlanarak çalıştırılan elektrik santralleridir. Barajlarda toplanan suda potansiyel enerji depo edilir. Yüksek bir yerden düşürülen yada akıtılan su Kinetik enerji kazanır. Bu su yüksekten akıtıldığında su türbinine çarparak enerjisini mekanik enerji olarak çarklara aktarır. Çarklar santralin üretecinin rotorunu döndürür. Rotor bir mıknatısın kutupları arasında döner. Rotorun bağlı olduğu jeneratörde alternatif akım üretilir. Bu santrallerin çevreye önemli bir zararları yoktur. Hidroelektrik santrallerde enerji dönüşüm sırası şöyledir :

Potansiyel Enerji—Kinetik enerji – Mekanik Enerji — Elektrik Enerjisi

Termik Santraller

Elektrik enerjisi elde edebilmek için kömür , gaz petrol gibi yakıtların ısıya dönüştürülmesi ile çalışan santrallerdir.Burada su kaynatılarak buhar elde edilir. Yüksek basınçlı buhar , buhar türbinlerine gönderilerek türbinin döndürülmesi sağlanır. Dönen bu türbin jeneratörün elektrik enerjisi üretmesini sağlar. Bu santraller yeşil alanlara zararlıdır, ormanları yok eder.Termik santrallerde enerji dönüşüm sırası şöyledir :

Kimyasal Enerji – Isı Enerjisi—Mekanik Enerji—Elektrik Enerjisi

Jeneratörlerin Yapısı

Türbinlerde alternatif akım üreten sistemlere Jeneratör denir. Jeneratörde manyetik alan oluşturan mıknatıs ile mıknatısın kolları arasında dönen dikdörtgen tel çerçeveler vardır. Çerçeve döndükçe düzgün manyetik alan oluşturur. Negatif yüklü elektronlara bir kuvvet etki eder. Çerçeve içinde elektronlar bir akım oluşturur. Bu akım halkalar üzerindeki fırçalar yardımıyla dış devreye alternatif akım olarak verilir.

Jeneratörün yapısında stator ve rotor diye iki önemli kısım vardır. Dıştaki sabit kısım statordur. Rotor ise statorun iç kısmında bulunur ve bir eksen etrafında döner.

Jeneratörlerin Akım Vermesi

Tel çerçeveyi döndürmek yerine manyetik alanı döndürmek daha kullanışlı bir jeneratör oluşturur.

Çubuk mıknatıs bir akım makarasının içinde hareket ettirilirse , makaraya sarılı iletken telin uçlarında oluşan akıma İndüksiyon Akımı denir.

TransformatörS. AKÇAY: Alternatif gerilimin düşürülmesi veya yükseltilmesini sağlayan araçlara denir.

Transformatör Primer (Giriş) devre , Sekonder (Çıkış) devre ve demir çekirdek diye üç ana kısımdan oluşur. Gerilimin uygulandığı sargıya Primer sargı denir. Gerilimin alındığı sargıya Sekonder sargı denir.

Bir transformatörde çıkış olarak az sarımlı sargı kullanılırsa gerilim düşer. Çıkıştaki sarım sayısı giriştekinden fazla ise gerilim yükselir.

VS = NS = İP

VP Np İS

VS = Sekonder Gerilim

VP = Primer Gerilim

NS = Sekonder Sarım Sayısı

NP = Primer Sarım Sayısı

İP = Primer Akım

İS =Sekonder Akım

Güç (P) : Birim zamanda yapılan iştir. Birimi wattır.

P = V. İ

Bir transformatörün verimi şöyle bulunur. Verim = Alınan Güç / Verilen Güç

Verim = Vs.İs

Vp. İp

Örnek : Bir transformatörün primeri 100 sarımlı ,sekonderi 600 sarımlıdır. Primere uygulanan gerilim 25 Volt olursa Sekonderdeki gerilim kaç volt olur.

Çözüm :

VS / VP = NS / NP VS / 25 = 600 / 100 VS = 25. 6 = 150 Volt

Örnek : Bir transformatörün primeri 300 sarımlı ,sekonderi 6 sarımlıdır. Sekonderden 25 amperlik akım çıktığına göre primerdeki akım kaç amperdir.

Çözüm :

NS / NP = İP / İS 6 / 300 = İP / 25 İP = 150 / 300 = 0,5 Amper

Örnek : Bir transformatörün verimi %90 dır. Primer sargıya 800 Volt gerilim uygulandığında sekonder sargıdan 300 Volt gerilim elde edilmektedir. Primer devreden 5 amperlik akım geçtiğine göre sekonder devreden çıkan akımı bulun

Çözüm :

Verim = Vs.İs 0,9 = 300. İs / 800. 5 İs = 12 Amper olur.

Vp. İp

Nükleer Enerji Santralleri

Nükleer enerji santralleri de bir çeşit termik santraldir. Farkı ise kullanılan yakıtlardır.

Atom çekirdeği proton ve nötronlardan oluşmuştur. Bu parçacıklar Çekirdekte E = m. c2 enerjisi ile birbirine bağlanmıştır. Çekirdek parçalanması veya birleşmesi sırasında bir miktar kütle enerjiye dönüşür.

E = m. c2 E=enerji m=kütle c = ışık hızı = 3.108 m /s

Örnek : 0,001 gram madde tamamen enerjiye dönüşürse ne kadar enerji açığa çıkar. (c = 3.108 m/s )

Çözüm :

m= 0,001 g = 0,000001kg c =3.108 m/s E = ?

E = m. c2 = 0,000001 . (3.108 )2 = 10-6 . 9. 1016 = 9.1010 Joule

Işık Yılı = ışığın bir yılda aldığı yoldur. ve bir uzunluk birimidir.

Işık Yılı = 365. 24. 60. 60. 3. 108 @ 9 460 800 000 000 000 metre @ 9,5 trilyon Km

Örnek : ışık güneşten yeryüzüne ne kadar sürede gelir. ( Güneş –yer uaklığ yaklaşık 150 milyon km )

Çözüm : t = 150000000 / 300000 = 500 saniye = yaklaşık 8,3 dakika

Nükleer Enerji : Atom çekirdeklerinin parçalanması yada birleştirilmesi ile açığa çıkan enerjiye nükleer enerji denir.

Nükleer enerji Nükleer santrallerde elektrik enerjisine çevrilir. Nükleer santrallerde enerji dönüşüm sırası şöyledir.

Nükleer Enerji—Isı Enerjisi—Mekanik Enerji—Elektrik Enerjisi

Fisyon ( Parçalanma )S. AKÇAY: Büyük yada ağır çekirdeklerin Nötronlarla bombardıman edilerek daha küçük çekirdeklere ayrılmasına Fisyon yada Çekirdek Bölünmesi denir. Örneğin Atom bombası

Füzyon (Birleşme ) : İki hafif çekirdeğin birleşerek daha ağır bir çekirdek oluşturmasına Füzyon yada Çekirdek kaynaşması denir. Örneğin Hidrojen bombası

Füzyon olayını kontrol etmek zordur. Füzyon olayının başlaması için gereken yüksek sıcaklık ve basınç atom bombası ile sağlanır. Füzyon olayının düşük sıcaklıkta ( Soğuk Füzyon ) gerçekleşmesi için çalışmalar sürüyor.

Maddelerin çok yüksek sıcaklıktaki haline Plazma denir. Güneş ve yıldızlar Plazma halindedir.

Nükleer santrallerde çekirdek tepkimelerinin gerçekleştiği kısma Reaktör denir.

Kararsız çekirdeklerin kararlı hale gelebilmek için kendiliğinden ışınlar yayması olayına Radyoaktiflik veya Radyoaktif Bozunma denir. Radyoaktif çekirdekler üç çeşit ışın yayarlar.

1- a (Alfa ) Işını : Radyoaktif çekirdek bir a (Alfa ) parçacığı yayınlayınca Kütle Numarası 4 birim Atom Numarası 2 birim azalır. Alfa parçacığı helyum çekirdeğine eşittir.Hızları 1,6.107 m/s dir. Havada birkaç cm yol alabilirler. Mide , solunum yada yaralardan vücuda girerse yüksek seviyede iyonizasyona sebep olduklarından çok tehlikelidirler.

Örneğin: 23892Uà 23490Th + a ( 42He )

2- b (Beta ) Işını : Radyoaktif çekirdek bir b (Beta ) parçacığı yayınlayınca Atom numarası 1 birim artar .Kütle numarası değişmez. Beta parçacığı elektronun kütlesi ve yüküne eşittir. Hızları 120000 km/s ile 299000km/s arasındadır. Havada 20 metreye kadar yol alabilirler. İyonlaşmaya sebep olurlar.

Örneğin : 23490Th à 23491Po + b ( -1oe )

3- γ (Gama ) Işınları : Radyoaktif çekirdek γ (Gama ) ışını yayınlayınca Kütle Numarası ve Atom Numarası değişmez. Boşluktaki hızları ışık hızına eşittir.Havada yüzlerce metre kurşun engeller içerisinde birkaç cm yol alabilirler. Gazları iyonlaştırırlar.

Örnek : 23892U atomu 2a ve 1b ışımaları yaparsa A.N ve K.N ne olur.

Çözüm :

23892Uà 23088X ( 2 a için )

à 23089X (1 b için )

23892Uà23088Xà 23089X

Yarılanma Süresi ( T1/2) : Bir radyoaktif elementin başlangıçta mevcut olan atomlarının yarısının parçalanması için geçen süreye yarılanma süresi (yarı ömür) denir. 22688Ra izotopunun yarı ömrü 1620 yıldır.

S. AKÇAY

S. AKÇAY

S. AKÇAY

S. AKÇAY

Yorum Yapın


Destekliyoruz arkada - arkadas - partner - partner - arkada - proxy - yemek tarifi - powermta - powermta administrator - Proxy